4.28.2010

Venus

  Venus is the second-closest planet to the Sun, orbiting it every 224.7 Earth days. After the Moon, it is the brightest natural object in the night sky, reaching an apparent magnitude of −4.6, bright enough to cast shadows. Because Venus is an inferior planet from Earth, it never appears to venture far from the Sun: its elongation reaches a maximum of 47.8°. Venus reaches its maximum brightness shortly before sunrise or shortly after sunset, for which reason it is often called the Morning Star or the Evening Star.
  Venus is covered with an opaque layer of highly reflective clouds of sulfuric acid, preventing its surface from being seen from space in visible light. Venus has the densest atmosphere of all the terrestrial planets, consisting mostly of carbon dioxide, as it has no carbon cycle to lock carbon back into rocks and surface features, nor organic life to absorb it in biomass. A younger Venus is believed to have possessed Earth-like oceans, but these totally evaporated as the temperature rose, leaving a dusty dry desertscape with many slab-like rocks. The water has most likely dissociated, and, because of the lack of a planetary magnetic field, the hydrogen has been swept into interplanetary space by the solar wind. The atmospheric pressure at the planet's surface is 92 times that of the Earth.
  Venus's surface was a subject of speculation until some of its secrets were revealed by planetary science in the twentieth century. It was finally mapped in detail by Project Magellan in 1990–91. The ground shows evidence of extensive volcanism, and the sulfur in the atmosphere may indicate that there have been some recent eruptions. However, the absence of evidence of lava flow accompanying any of the visible caldera remains an enigma. The planet has few impact craters, demonstrating that the surface is relatively young, approximately half a billion years old. There is no evidence for plate tectonics, possibly because its crust is too strong to subduct without water to make it less viscous. Instead, Venus may lose its internal heat in periodic massive resurfacing events.
  Venus is one of the four solar terrestrial planets, meaning that, like the Earth, it is a rocky body. In size and mass, it is very similar to the Earth, and is often described as Earth's "sister" or "twin". The diameter of Venus is only 650 km less than the Earth's, and its mass is 81.5% of the Earth's. However, conditions on the Venusian surface differ radically from those on Earth, due to its dense carbon dioxide atmosphere. The mass of the atmosphere of Venus is 96.5% carbon dioxide, with most of the remaining 3.5% being nitrogen.
  About 80% of Venus's surface is covered by smooth volcanic plains, consisting of 70% plains with wrinkle ridges and 10% smooth or lobate plains. Two highland 'continents' make up the rest of its surface area, one lying in the planet's northern hemisphere and the other just south of the equator. The northern continent is called Ishtar Terra, after Ishtar, the Babylonian goddess of love, and is about the size of Australia. Maxwell Montes, the highest mountain on Venus, lies on Ishtar Terra. Its peak is 11 km above Venus's average surface elevation. The southern continent is called Aphrodite Terra, after the Greek goddess of love, and is the larger of the two highland regions at roughly the size of South America. A network of fractures and faults covers much of this area.
  As well as the impact craters, mountains, and valleys commonly found on rocky planets, Venus has a number of unique surface features.
  Without seismic data or knowledge of its moment of inertia, there is little direct information about the internal structure and geochemistry of Venus. However, the similarity in size and density between Venus and Earth suggests that they share a similar internal structure: a core, mantle, and crust. Like that of Earth, the Venusian core is thought to be at least partially liquid. The slightly smaller size of Venus suggests that pressures are significantly lower in its deep interior than Earth. The principal difference between the two planets is the lack of plate tectonics on Venus, likely due to the dry surface and mantle. This results in reduced heat loss from the planet, preventing it from cooling and providing a likely explanation for its lack of an internally generated magnetic field.
   The surface of Venus is effectively isothermal; it retains a constant temperature between day and night and between the equator and the poles. The planet's minute axial tilt (less than three degrees, compared with 23 degrees for Earth), also minimizes seasonal temperature variation. The only appreciable variation in temperature occurs with altitude. In 1995, the Magellan probe imaged a highly reflective substance at the tops of Venus's highest mountain peaks which bore a strong resemblance to terrestrial snow. This substance arguably formed from a similar process to snow, albeit at a far higher temperature. Too volatile to condense on the surface, it rose in gas form to cooler higher elevations, where it then fell as precipitation. The identity of this substance is not known with certainty, but speculation has ranged from elemental tellurium to lead sulfide (galena).
  The clouds of Venus are capable of producing lightning much like the clouds on Earth. The existence of lightning had been controversial since the first suspected bursts were detected by the Soviet Venera probes. However, in 2006–07 Venus Express clearly detected whistler mode waves, the signatures of lightning. Their intermittent appearance indicates a pattern associated with weather activity. The lightning rate is at least half of that on Earth. In 2007 the Venus Express probe discovered that a huge double atmospheric vortex exists at the south pole of the planet.
   In 1980, the Pioneer Venus Orbiter found that Venus's magnetic field is much weaker than that of Earth's. This magnetic field is induced by an interaction between the ionosphere and the solar wind,  rather than by an internal dynamo in the core like the one inside the Earth. Venus's small induced magnetosphere provides negligible protection to the atmosphere against cosmic radiation. This radiation may result in cloud-to-cloud lightning discharges.
   The lack of an intrinsic magnetic field at Venus was surprising given that it is similar to Earth in size, and was expected also to contain a dynamo at its core. A dynamo requires three things: a conducting liquid, rotation, and convection. The core is thought to be electrically conductive and, while its rotation is often thought to be too slow, simulations show that it is adequate to produce a dynamo. This implies that the dynamo is missing because of a lack of convection in Venus's core. On Earth, convection occurs in the liquid outer layer of the core because the bottom of the liquid layer is much hotter than the top. On Venus, a global resurfacing event may have shut down plate tectonics and led to a reduced heat flux through the crust. This caused the mantle temperature to increase, thereby reducing the heat flux out of the core. As a result, there is not an internal geodynamo that can drive a magnetic field. Instead the heat energy from the core is being used to reheat the crust.
  Venus has no solid inner core, or its core is not currently cooling, so that the entire liquid part of the core is at approximately the same temperature. Another possibility is that its core has already completely solidified. The state of the core is highly dependent on the concentration of sulfur, which is unknown at present.

No comments:

Post a Comment