5.14.2010

Saturn

  Saturn is the sixth planet from the Sun and the second largest planet in the Solar System, after Jupiter. Saturn, along with Jupiter, Uranus and Neptune, is classified as a gas giant.
Due to a combination of its lower density, rapid rotation, and fluid state, Saturn is an oblate spheroid; that is, it is flattened at the poles and bulges at the equator. Its equatorial and polar radii differ by almost 10%—60,268 km versus 54,364 km. The other gas planets are also oblate, but to a lesser extent. Saturn is the only planet of the Solar System that is less dense than water. Although Saturn's core is considerably denser than water, the average specific density of the planet is 0.69 g/cm³ due to the gaseous atmosphere. Saturn is only 95 Earth masses, compared to Jupiter, which is 318 times the mass of the Earth but only about 20% larger than Saturn.
  Though there is no direct information about Saturn's internal structure, it is thought that its interior is similar to that of Jupiter, having a small rocky core surrounded mostly by hydrogen and helium. The rocky core is similar in composition to the Earth, but denser. Above this, there is a thicker liquid metallic hydrogen layer, followed by a layer of liquid hydrogen and helium, and in the outermost 1000 km a gaseous atmosphere. Traces of various volatile are also present. The core region is estimated to be about 9–22 times the mass of the Earth. Saturn has a very hot interior, reaching 11,700 °C at the core, and it radiates 2.5 times more energy into space than it receives from the Sun. Most of the extra energy is generated by the Kelvin-Helmholtz mechanism (slow gravitational compression), but this alone may not be sufficient to explain Saturn's heat production. An additional proposed mechanism by which Saturn may generate some of its heat is the "raining out" of droplets of helium deep in Saturn's interior, the droplets of helium releasing heat by friction as they fall down through the lighter hydrogen.
  The outer atmosphere of Saturn consists of about 96.3% molecular hydrogen and 3.25% helium. Trace amounts of ammonia, acetylene, ethane, phosphine, and methane have also been detected. The upper clouds on Saturn are composed of ammonia crystals, while the lower level clouds appear to be composed of either ammonium hydrosulfide (NH4SH) or water. The atmosphere of Saturn is significantly deficient in helium relative to the abundance of the elements in the Sun.
  The quantity of elements heavier than helium are not known precisely, but the proportions are assumed to match the primordial abundances from the formation of the Solar System. The total mass of these elements is estimated to be 19–31 times the mass of the Earth, with a significant fraction located in Saturn's core region.
 Saturn's celestial body atmosphere exhibits a banded pattern similar to Jupiter's (the nomenclature is the same), but Saturn's bands are much fainter and are also much wider near the equator. At the bottom, extending for 10 km and with a temperature of −23 °C, is a layer made up of water ice. After that comes a layer of ammonium hydrosulfide ice, which extends for another 50 km and is approximately at −93 °C. Eighty kilometers above that are ammonia ice clouds, where the temperatures are about −153 °C. Near the top, extending for some 200 km to 270 km above the clouds, come layers of visible cloud tops and a hydrogen and helium atmosphere. Saturn's winds are among the Solar System's fastest. Voyager data indicate peak easterly winds of 500 m/s (1800 km/h). Saturn's finer cloud patterns were not observed until the Voyager flybys. Since then, however, Earth-based telescopy has improved to the point where regular observations can be made.
   Saturn's northern hemisphere, as seen by Cassini. Note the planet's blue appearance through the ring.Saturn's usually bland atmosphere occasionally exhibits long-lived ovals and other features common on Jupiter. In 1990, the Hubble Space Telescope observed an enormous white cloud near Saturn's equator which was not present during the Voyager encounters, and, in 1994, another smaller storm was observed. The 1990 storm was an example of a Great White Spot, a unique but short-lived phenomenon which occurs once every Saturnian year, or roughly every 30 Earth years, around the time of the northern hemisphere's summer solstice. Previous Great White Spots were observed in 1876, 1903, 1933, and 1960, with the 1933 storm being the most famous. If the periodicity is maintained, another storm will occur in about 2020.
  In recent images from the Cassini spacecraft, Saturn's northern hemisphere appears a bright blue, similar to Uranus, as can be seen in the image below. This blue color cannot currently be observed from Earth, because Saturn's rings are currently blocking its northern hemisphere. The color is most likely caused by Rayleigh scattering.
  Astronomers using infrared imaging have shown that Saturn has a warm polar vortex and that it is the only such feature known in the solar system. This, they say, is the warmest spot on Saturn. Whereas temperatures on Saturn are normally −185 °C, temperatures on the vortex often reach as high as −122 °C.
  A persisting hexagonal wave pattern around the north polar vortex in the atmosphere at about 78°N was first noted in the Voyager images. Unlike the north pole, HST imaging of the south polar region indicates the presence of a jet stream, but no strong polar vortex nor any hexagonal standing wave.
  Saturn has an intrinsic magnetic field that has a simple, symmetric shape—a magnetic dipole. Its strength at the equator—0.2 gauss (20 µT)—is approximately one twentieth than that of the field around Jupiter and slightly weaker than Earth's magnetic field. As a result Saturn's magnetosphere is much smaller than Jupiter's and extends slightly beyond the orbit of Titan. Most probably, the magnetic field is generated similarly to that of Jupiter—by currents in the metallic-hydrogen layer, which is called a metallic-hydrogen dynamo. Similarly to those of other planets, this magnetosphere is efficient at deflecting the solar wind particles from the Sun. The moon Titan orbits within the outer part of Saturn's magnetosphere and contributes plasma from the ionized particles in Titan's outer atmosphere.
   The average distance between Saturn and the Sun is over 1 400 000 000 km (9 AU). With an average orbital speed of 9.69 km/s, it takes Saturn 10 759 Earth days (or about 29½ years), to finish one revolution around the Sun. The elliptical orbit of Saturn is inclined 2.48° relative to the orbital plane of the Earth. Because of an eccentricity of 0.056, the distance between Saturn and the Sun varies by approximately 155 000 000 km between perihelion and aphelion, which are the nearest and most distant points of the planet along its orbital path, respectively.
  The visible features on Saturn rotate at different rates depending on latitude, and multiple rotation periods have been assigned to various regions (as in Jupiter's case): System I has a period of 10 h 14 min 00 s (844.3°/d) and encompasses the Equatorial Zone, which extends from the northern edge of the South Equatorial Belt to the southern edge of the North Equatorial Belt. All other Saturnian latitudes have been assigned a rotation period of 10 h 39 min 24 s (810.76°/d), which is System II. System III, based on radio emissions from the planet in the period of the Voyager flybys, has a period of 10 h 39 min 22.4 s (810.8°/d); because it is very close to System II, it has largely superseded it.
  However, a precise value for the rotation period of the interior remains elusive. While approaching Saturn in 2004, the Cassini spacecraft found that the radio rotation period of Saturn had increased appreciably, to approximately 10 h 45 m 45 s (± 36 s). The cause of the change is unknown—it was thought to be due to a movement of the radio source to a different latitude inside Saturn, with a different rotational period, rather than because of a change in Saturn's rotation.
  Later, in March 2007, it was found that the rotation of the radio emissions did not trace the rotation of the planet, but rather is produced by convection of the plasma disc, which is dependent also on other factors besides the planet's rotation. It was reported that the variance in measured rotation periods may be caused by geyser activity on Saturn's moon Enceladus. The water vapor emitted into Saturn's orbit by this activity becomes charged and "weighs down" Saturn's magnetic field, slowing its rotation slightly relative to the rotation of the planet. At the time it was stated that there is no currently known method of determining the rotation rate of Saturn's core.
  The latest estimate of Saturn's rotation based on a compilation of various measurements from the Cassini, Voyager and Pioneer probes was reported in September 2007 is 10 hours, 32 minutes, 35 seconds.
  Saturn is probably best known for its system of planetary rings, which makes it the most visually remarkable object in the solar system. The rings extend from 6 630 km to 120 700 km above Saturn's equator, average approximately 20 meters in thickness, and are composed of 93 percent water ice with a smattering of tholin impurities, and 7 percent amorphous carbon. The particles that make up the rings range in size from specks of dust to the size of a small automobile. There are two main theories regarding the origin of the rings. One theory is that the rings are remnants of a destroyed moon of Saturn. The second theory is that the rings are left over from the original nebular material from which Saturn formed.
  Beyond the main rings at a distance of 12 million km from the planet is the sparse Phoebe ring, which is tilted at an angle of 27° to the other rings and, like Phoebe, orbits in retrograde fashion.
  Saturn has at least 62 moons. Titan, the largest, comprises more than 90 percent of the mass in orbit around Saturn, including the rings. Saturn's second largest moon Rhea may have a tenuous ring system of its own. Many of the other moons are very small: 34 are less than 10 km in diameter, and another 14 less than 50 km.

No comments:

Post a Comment