Uranus is the seventh planet from the Sun, and the third-largest and fourth most massive planet in the Solar System. Though it is visible to the naked eye like the five classical planets, it was never recognized as a planet by ancient observers because of its dimness and slow orbit. Sir William Herschel announced its discovery on March 13, 1781, expanding the known boundaries of the Solar System for the first time in modern history. Uranus was also the first planet discovered with a telescope.
Uranus is similar in composition to Neptune, and both have different compositions from those of the larger gas giants Jupiter and Saturn.
Uranus had been observed on many occasions before its discovery as a planet, but it was generally mistaken for a star. The earliest recorded sighting was in 1690 when John Flamsteed observed the planet at least six times, cataloging it as 34 Tauri. The French astronomer, Pierre Lemonnier, observed Uranus at least twelve times between 1750 and 1769, including on four consecutive nights.
Sir William Herschel observed the planet on 13 March 1781 while in the garden of his house at 19 New King Street in the town of Bath, Somerset (now the Herschel Museum of Astronomy), but initially reported it (on 26 April 1781) as a "comet". Herschel "engaged in a series of observations on the parallax of the fixed stars", using a telescope of his own design.
Uranus revolves around the Sun once every 84 Earth years. Its average distance from the Sun is roughly 3 billion km (about 20 AU). The intensity of sunlight on Uranus is about 1/400 that on Earth. Its orbital elements were first calculated in 1783 by Pierre-Simon Laplace. With time, discrepancies began to appear between the predicted and observed orbits, and in 1841, John Couch Adams first proposed that the differences might be due to the gravitational tug of an unseen planet. In 1845, Urbain Le Verrier began his own independent research into Uranus's orbit. On September 23, 1846, Johann Gottfried Galle located a new planet, later named Neptune, at nearly the position predicted by Le Verrier.
The rotational period of the interior of Uranus is 17 hours, 14 minutes. However, as on all giant planets, its upper atmosphere experiences very strong winds in the direction of rotation. At some latitudes, such as about two-thirds of the way from the equator to the south pole, visible features of the atmosphere move much faster, making a full rotation in as little as 14 hours.
Uranus's axis of rotation lies on its side on the plane of the Solar System, with an axial tilt of 97.77 degrees. This gives it seasonal changes completely unlike those of the other major planets. Other planets can be visualized to rotate like tilted spinning tops on the plane of the Solar System, while Uranus rotates more like a tilted rolling ball. Near the time of Uranian solstices, one pole faces the Sun continuously while the other pole faces away. Only a narrow strip around the equator experiences a rapid day-night cycle, but with the Sun very low over the horizon as in the Earth's polar regions. At the other side of Uranus's orbit the orientation of the poles towards the Sun is reversed. Each pole gets around 42 years of continuous sunlight, followed by 42 years of darkness. Near the time of the equinoxes, the Sun faces the equator of Uranus giving a period of day-night cycles similar to those seen on most of the other planets. Uranus reached its most recent equinox on 7 December 2007.
One result of this axis orientation is that, on average during the year, the polar regions of Uranus receive a greater energy input from the Sun than its equatorial regions. Nevertheless, Uranus is hotter at its equator than at its poles. The underlying mechanism which causes this is unknown. The reason for Uranus's unusual axial tilt is also not known with certainty, but the usual speculation is that during the formation of the Solar System, an Earth sized protoplanet collided with Uranus, causing the skewed orientation. Uranus's south pole was pointed almost directly at the Sun at the time of Voyager 2's flyby in 1986.
From 1995 to 2006, Uranus's apparent magnitude fluctuated between +5.6 and +5.9, placing it just within the limit of naked eye visibility at +6.5. Its angular diameter is between 3.4 and 3.7 arcseconds, compared with 16 to 20 arcseconds for Saturn and 32 to 45 arcseconds for Jupiter. At opposition, Uranus is visible to the naked eye in dark skies, and becomes an easy target even in urban conditions with binoculars. In larger amateur telescopes with an objective diameter of between 15 and 23 cm, the planet appears as a pale cyan disk with distinct limb darkening. With a large telescope of 25 cm or wider, cloud patterns, as well as some of the larger satellites, such as Titania and Oberon, may be visible.
Uranus's mass is roughly 14.5 times that of the Earth, making it the least massive of the giant planets, while its density of 1.27 g/cm³ makes it the second least dense planet, after Saturn. Though having a diameter slightly larger than Neptune's (roughly four times Earth's), it is less massive. These values indicate that it is made primarily of various ices, such as water, ammonia, and methane. The total mass of ice in Uranus's interior is not precisely known, as different figures emerge depending on the model chosen; however, it must be between 9.3 and 13.5 Earth masses. Hydrogen and helium constitute only a small part of the total, with between 0.5 and 1.5 Earth masses. The remainder of the mass (0.5 to 3.7 Earth masses) is accounted for by rocky material.
The standard model of Uranus's structure is that it consists of three layers: a rocky core in the center, an icy mantle in the middle and an outer gaseous hydrogen/helium envelope. The core is relatively small, with a mass of only 0.55 Earth masses and a radius less than 20 percent of Uranus's; the mantle comprises the bulk of the planet, with around 13.4 Earth masses, while the upper atmosphere is relatively insubstantial, weighing about 0.5 Earth masses and extending for the last 20 percent of Uranus's radius. Uranus's core density is around 9 g/cm³, with a pressure in the center of 8 million bars (800 GPa) and a temperature of about 5000 K. The ice mantle is not in fact composed of ice in the conventional sense, but of a hot and dense fluid consisting of water, ammonia and other volatiles. This fluid, which has a high electrical conductivity, is sometimes called a water–ammonia ocean. The bulk compositions of Uranus and Neptune are very different from those of Jupiter and Saturn, with ice dominating over gases, hence justifying their separate classification as ice giants.
While the model considered above is reasonably standard, it is not unique; other models also satisfy observations. For instance, if substantial amounts of hydrogen and rocky material are mixed in the ice mantle, the total mass of ices in the interior will be lower, and, correspondingly, the total mass of rocks and hydrogen will be higher. Presently available data does not allow science to determine which model is correct. The fluid interior structure of Uranus means that it has no solid surface. The gaseous atmosphere gradually transitions into the internal liquid layers. However, for the sake of convenience, a revolving oblate spheroid set at the point at which atmospheric pressure equals 1 bar (100 kPa) is conditionally designated as a "surface". It has equatorial and polar radii of 25 559 ± 4 and 24 973 ± 20 km, respectively. This surface will be used throughout this article as a zero point for altitudes.
Uranus's internal heat appears markedly lower than that of the other giant planets; in astronomical terms, it has a low thermal flux. Why Uranus's internal temperature is so low is still not understood. Neptune, which is Uranus's near twin in size and composition, radiates 2.61 times as much energy into space as it receives from the Sun. Uranus, by contrast, radiates hardly any excess heat at all. The total power radiated by Uranus in the far infrared (i.e. heat) part of the spectrum is 1.06 ± 0.08 times the solar energy absorbed in its atmosphere. In fact, Uranus's heat flux is only 0.042 ± 0.047 W/m², which is lower than the internal heat flux of Earth of about 0.075 W/m². The lowest temperature recorded in Uranus's tropopause is 49 K (–224 °C), making Uranus the coldest planet in the Solar System.
Although there is no well-defined solid surface within Uranus's interior, the outermost part of Uranus's gaseous envelope that is accessible to remote sensing is called its atmosphere. Remote sensing capability extends down to roughly 300 km below the 1 bar (100 kPa) level, with a corresponding pressure around 100 bar (10 MPa) and temperature of 320 K. The tenuous corona of the atmosphere extends remarkably over two planetary radii from the nominal surface at 1 bar pressure. The Uranian atmosphere can be divided into three layers: the troposphere, between altitudes of −300 and 50 km and pressures from 100 to 0.1 bar; (10 MPa to 10 kPa), the stratosphere, spanning altitudes between 50 and 4000 km and pressures of between 0.1 and 10–10 bar (10 kPa to 10 µPa), and the thermosphere/corona extending from 4,000 km to as high as 50,000 km from the surface. There is no mesosphere.
The composition of the Uranian atmosphere is different from the composition of whole planet, consisting as it does mainly of molecular hydrogen and helium. The helium molar fraction, i.e. the number of helium atoms per molecule of gas, is 0.15 ± 0.03 in the upper troposphere, which corresponds to a mass fraction 0.26 ± 0.05. This value is very close to the protosolar helium mass fraction of 0.275 ± 0.01, indicating that helium has not settled in the center of the planet as it has in the gas giants. The third most abundant constituent of the Uranian atmosphere is methane (CH4). Methane possesses prominent absorption bands in the visible and near-infrared (IR) making Uranus aquamarine or cyan in color. Methane molecules account for 2.3% of the atmosphere by molar fraction below the methane cloud deck at the pressure level of 1.3 bar (130 kPa); this represents about 20 to 30 times the carbon abundance found in the Sun. The mixing ratio is much lower in the upper atmosphere owing to its extremely low temperature, which lowers the saturation level and causes excess methane to freeze out. The abundances of less volatile compounds such as ammonia, water and hydrogen sulfide in the deep atmosphere are poorly known. However they are probably also higher than solar values. Along with methane, trace amounts of various hydrocarbons are found in the stratosphere of Uranus, which are thought to be produced from methane by photolysis induced by the solar ultraviolet (UV) radiation. They include ethane (C2H6), acetylene (C2H2), methylacetylene (CH3C2H), diacetylene (C2HC2H). Spectroscopy has also uncovered traces of water vapor, carbon monoxide and carbon dioxide in the upper atmosphere, which can only originate from an external source such as infalling dust and comets.
The troposphere is the lowest and densest part of the atmosphere and is characterized by a decrease in temperature with altitude. The temperature falls from about 320 K at the base of the nominal troposphere at −300 km to 53 K at 50 km. The temperatures in the coldest upper region of the troposphere (the tropopause) actually vary in the range between 49 and 57 K depending on planetary latitude.
The tropopause region is responsible for the vast majority of the planet’s thermal far infrared emissions, thus determining its effective temperature of 59.1 ± 0.3 K.
Before the arrival of Voyager 2, no measurements of the Uranian magnetosphere had been taken, so its nature remained a mystery. Before 1986, astronomers had expected the magnetic field of Uranus to be in line with the solar wind, since it would then align with the planet's poles that lie in the ecliptic.
Voyager's observations revealed that the magnetic field is peculiar, both because it does not originate from the planet's geometric center, and because it is tilted at 59° from the axis of rotation. In fact the magnetic dipole is shifted from the center of the planet towards the south rotational pole by as much as one third of the planetary radius. This unusual geometry results in a highly asymmetric magnetosphere, where the magnetic field strength on the surface in the southern hemisphere can be as low as 0.1 gauss (10 µT), whereas in the northern hemisphere it can be as high as 1.1 gauss (110 µT). The average field at the surface is 0.23 gauss (23 µT). In comparison, the magnetic field of Earth is roughly as strong at either pole, and its "magnetic equator" is roughly parallel with its geographical equator. The dipole moment of Uranus is 50 times that of Earth. Neptune has a similarly displaced and tilted magnetic field, suggesting that this may be a common feature of ice giants. One hypothesis is that, unlike the magnetic fields of the terrestrial and gas giant planets, which are generated within their cores, the ice giants' magnetic fields are generated by motion at relatively shallow depths, for instance, in the water–ammonia ocean.
Despite its curious alignment, in other respects the Uranian magnetosphere is like those of other planets: it has a bow shock located at about 23 Uranian radii ahead of it, a magnetopause at 18 Uranian radii, a fully developed magnetotail and radiation belts. Overall, the structure of Uranus's magnetosphere is different from Jupiter's and more similar to Saturn's. Uranus's magnetotail trails behind the planet into space for millions of kilometers and is twisted by the planet's sideways rotation into a long corkscrew.
Uranus's magnetosphere contains charged particles: protons and electrons with small amount of H2+ ions. No heavier ions have been detected. Many of these particles probably derive from the hot atmospheric corona. The ion and electron energies can be as high as 4 and 1.2 megaelectronvolts, respectively. The density of low energy (below 1 kiloelectronvolt) ions in the inner magnetosphere is about 2 cm−3. The particle population is strongly affected by the Uranian moons that sweep through the magnetosphere leaving noticeable gaps. The particle flux is high enough to cause darkening or space weathering of the moon’s surfaces on an astronomically rapid timescale of 100,000 years. This may be the cause of the uniformly dark colouration of the moons and rings. Uranus has relatively well developed aurorae, which are seen as bright arcs around both magnetic poles. However, unlike Jupiter's, Uranus's aurorae seem to be insignificant for the energy balance of the planetary thermosphere.
At ultraviolet and visible wavelengths, Uranus's atmosphere is remarkably bland in comparison to the other gas giants, even to Neptune, which it otherwise closely resembles. When Voyager 2 flew by Uranus in 1986, it observed a total of ten cloud features across the entire planet.
One proposed explanation for this dearth of features is that Uranus's internal heat appears markedly lower than that of the other giant planets. The lowest temperature recorded in Uranus's tropopause is 49 K, making Uranus the coldest planet in the Solar System, colder than Neptune.
Many argue that the differences between the ice giants and the gas giants extend to their formation.
The Solar System is believed to have formed from a giant rotating ball of gas and dust known as the presolar nebula. Much of the nebula's gas, primarily hydrogen and helium, formed the Sun, while the dust grains collected together to form the first protoplanets. As the planets grew, some of them eventually accreted enough matter for their gravity to hold onto the nebula's leftover gas. The more gas they held onto, the larger they became; the larger they became, the more gas they held onto until a critical point was reached, and their size began to increase exponentially. The ice giants, with only a few Earth masses of nebular gas, never reached that critical point. Recent simulations of planetary migration have suggested that both ice giants formed closer to the Sun than their present positions, and moved outwards after formation, a hypothesis which is detailed in the Nice model.
Uranus has 27 known natural satellites. The names for these satellites are chosen from characters from the works of Shakespeare and Alexander Pope. The five main satellites are Miranda, Ariel, Umbriel, Titania and Oberon. The Uranian satellite system is the least massive among the gas giants; indeed, the combined mass of the five major satellites would be less than half that of Triton alone.
The largest of the satellites, Titania, has a radius of only 788.9 km, or less than half that of the Moon, but slightly more than Rhea, the second largest moon of Saturn, making Titania the eighth largest moon in the Solar System. The moons have relatively low albedos; ranging from 0.20 for Umbriel to 0.35 for Ariel (in green light). The moons are ice-rock conglomerates composed of roughly fifty percent ice and fifty percent rock. The ice may include ammonia and carbon dioxide.
Among the satellites, Ariel appears to have the youngest surface with the fewest impact craters, while Umbriel's appears oldest. Miranda possesses fault canyons 20 kilometers deep, terraced layers, and a chaotic variation in surface ages and features. Miranda's past geologic activity is believed to have been driven by tidal heating at a time when its orbit was more eccentric than currently, probably as a result of a formerly present 3:1 orbital resonance with Umbriel.
Extensional processes associated with upwelling diapirs are the likely origin of the moon's 'racetrack'-like coronae. Similarly, Ariel is believed to have once been held in a 4:1 resonance with Titania.
No comments:
Post a Comment